علي مبارك محمد القحطاني

 


      
 
الاسم الاول: 
علي
اسم العائلة: 
القحطاني
الدرجة العلمية: 
دكتوراة
مجال الدراسة: 
هندسة
المؤسسة التعليمية: 
Birmingham University

مجال التميز

تميز دراسي و بحثي

 

 

البحوث المنشورة

 

البحث (1):

 

عنوان البحث:

Thermodynamic Simulation Comparison Of AVL BOOST And Ricardo WAVE For HCCI And SI Engines Optimisation

رابط إلى البحث:

Click here 

تاريخ النشر:

  24/06/2015

موجز عن البحث:

 

The aim of this paper is to compare two simulation software platforms, AVL BOOST™ and Ricardo WAVE™ as used to simulate HCCI and SI GDI engines with the intention of maximising the engine’s efficiency and minimising the emissions. This paper compares these platforms in an experimentally validated model to analyse a spark ignition and a Homogeneous Compression Ignition Charge (HCCI) single cylinder 4 valve gasoline engines with multiple configurations and running parameters in order to find the most optimal set-up for the engine, with the prospect of allowing an optimum engine to be built and tested in real world conditions without the need for multiple expensive prototypes and long delays. The aim of this paper is to compare two simulation software platforms, AVL BOOSTTMand Ricardo WAVETMas used to simulate HCCI and SI GDI engines with the intention of maximising the engine’s efficiency and minimising the emissions. This paper compares these platforms in an experimentally validated model to analyse a spark ignition and a Homogeneous Compression Ignition Charge (HCCI) single cylinder 4 valve gasoline engines with multiple configurations and running parameters in order to find the most optimal set-up for the engine, with the prospect of allowing an optimum engine to be built and tested in real world conditions without the need for multiple expensive prototypes and long delaysThe aim of this paper is to compare two simulation software platforms, AVL BOOSTTMand Ricardo WAVETMas used to simulate HCCI and SI GDI engines with the intention of maximising the engine’s efficiency and minimising the emissions. This paper compares these platforms in an experimentally validated model to analyse a spark ignition and a Homogeneous Compression Ignition Charge (HCCI) single cylinder 4 valve gasoline engines with multiple configurations and running parameters in order to find the most optimal set-up for the engine, with the prospect of allowing an optimum engine to be built and tested in real world conditions without the need for multiple expensive prototypes and long delays The aim of this paper is to compare two simulation software platforms, AVL BOOSTTMand Ricardo WAVETMas used to simulate HCCI and SI GDI engines with the intention of maximising the engine’s efficiency and minimising the emissions. This paper compares these platforms in an experimentally validated model to analyse a spark ignition and a Homogeneous Compression Ignition Charge (HCCI) single cylinder 4 valve gasoline engines with multiple configurations and running parameters in order to find the most optimal set-up for the engine, with the prospect of allowing an optimum engine to be built and tested in real world conditions without the need for multiple expensive prototypes and long delays The aim of this paper is to compare two simulation software platforms, AVL BOOSTTMand Ricardo WAVETMas used to simulate HCCI and SI GDI engines with the intention of maximising the engine’s efficiency and minimising the emissions. This paper compares these platforms in an experimentally validated model to analyse a spark ignition and a Homogeneous Compression Ignition Charge (HCCI) single cylinder 4 valve gasoline engines with multiple configurations and running parameters in order to find the most optimal set-up for the engine, with the prospect of allowing an optimum engine to be built and tested in real world conditions without the need for multiple expensive prototypes and long delays

البحث (2):

 

عنوان البحث:

Thermodynamic simulation comparison of opposed two-stroke and conventional four-stroke engines

رابط إلى البحث:

Click here

تاريخ النشر:

25/06/2015

موجز عن البحث:

 

Today’s technology leveraging allows OP2S (Opposed Piston 2-Stroke) engine to be considered as an alternative for the conventional four-stroke (4S) engines as mechanical drive in various applications, mainly in transportation. In general, OP2S engines are suited to compete with conventional 4-stroke engines where power-to-weight ratio, power-to-bulk volume ratio and fuel efficiency are requirements. This paper does present a brief advent, as well as the renaissance of OP2S engines and the novel technologies which have been used in the new approach. Also precise thermodynamic benefits have been considered, to demonstrate the fundamental efficiency advantage of OP2S engines. Hence, simulations of two different engine configurations have been taken into consideration: a one cylinder opposed piston engine and two-cylinder conventional piston four-stroke engine. In pursuance of fulfilling this goal, the engines have been simulated in AVL Boost™ platform which is one of the most accurate Virtual Engine Tools, to predict engine performance such as combustion optimization, emission and fuel consumption. To minimize the potential differences of friction losses, the bore and stroke per cylinder are taken as constant. The closed-cycle performance of the engine configurations is compared using a custom analysis tool that allows the sources of thermal efficiency differences to be identified and quantified. As a result, brake thermal efficiency, power and torque of OP2S engine have been improved compared to conventional engines while emission concern has been alleviated.

البحث (3):

 

عنوان البحث:

Investigation Into The Effect Of Bore/Stroke Ratio On A Single Cylinder Two Stroke Opposed Piston Engine

رابط إلى البحث:

Click here

تاريخ النشر:

16/09/2016

موجز عن البحث:

 

Opposed-piston (OP) engine’s promising fuel efficiency has attracted the interest of automotive industry in the recent years. The opposed-piston two-stroke (OP2S) engine technology heightens this fuel efficiency benefit and offers advances in structure, power density and thermal efficiency whilst sustaining its lower cost and weight. Today thermodynamic modelling remains an indispensable and cost effective route in the development and optimisation of internal combustion engines (ICEs). To achieve this goal, the OP2S engine is simulated and validated against experimental results in AVL Boost™, which is hailed as one of the most reliable and advanced engine simulation tools. Detailed analyses of the piston dynamics, heat release, scavenging and heat transfers are highlighted in discrete sections of this paper. Having compared distinct heat release models, the Wiebe 2-Zone model emerged efficacious in replicating the heat release characteristics of the PAMAR™ engine. In comparing the numerical and experimental results, the simulation revealed minimal differences in peak pressure, peak temperature and maximum pressure raise rate, under ±2.5% differences for indicated power, IMEP, indicated thermal efficiency (ITE) and ISFC. Subsequently, confidence taken from the validated numerical model is then deployed to investigate the effect of stroke-to-bore (S/B) ratio on OP2S performance. Three combinations of S/B ratios (0.5, 1.25, and 1.69) with identical swept volume are analysed in this study. Utilisation of the validated model ensured the standardisation of intake, exhaust and the combustion systems in order to isolate the effects of S/B ratio. Results indicate that heat losses decrease with increasing S/B ratio because of the reduced surface area-to-volume in the cylinder. Consequently, an improvement in ITE and mechanical efficiency is observed with reduced ISFC for higher S/B ratios. A tendency of upsurge in combustion efficiency is also evident for higher S/B ratio due to reduced heat transfer near minimum volume of the combustion chamber.