11/12/2023
  • السفارة

  • وزارة التعليم

  • سفير 2

  • الرئيسية

  • عن الملحقية

    • الملحق الثقافي

    • الملحقية

  • الأدلة والإجراءات

    • الدليل الشامل للمبتعث

    • دليل الطالب المالي

    • الدليل الطبي

    • اجراءات القنصلية

    • الدليل القانوني

      • التأشيرات

      • العقار – إنجلترا وويلز

  • الأخبار

    • أخبار

    • تعاميم

    • إعلانات

  • خدمات

    • سفير 2

    • العلاج

    • الأندية الطلابية

    • تصديق الشهادات والقبولات

    • تحميل الاستمارات

    • المكتبة الرقمية

  • إتصل بنا

  • الرئيسية

  • عن الملحقية

    • الملحق الثقافي

    • الملحقية

  • الأدلة والإجراءات

    • الدليل الشامل للمبتعث

    • دليل الطالب المالي

    • الدليل الطبي

    • اجراءات القنصلية

    • الدليل القانوني

      • التأشيرات

      • العقار – إنجلترا وويلز

  • الأخبار

    • أخبار

    • تعاميم

    • إعلانات

  • خدمات

    • سفير 2

    • العلاج

    • الأندية الطلابية

    • تصديق الشهادات والقبولات

    • تحميل الاستمارات

    • المكتبة الرقمية

  • إتصل بنا

نهلة عيد سليمان الحازمي

LnRiLWNvbnRhaW5lcltkYXRhLXRvb2xzZXQtYmxvY2tzLWNvbnRhaW5lcj0iNzA1MTliNzAwOTM0OThmOWM1OTFiNGUxNWIwMTUwNDgiXSB7IHBhZGRpbmc6IDI1cHg7Ym94LXNoYWRvdzogNXB4IDVweCAxMHB4IDAgcmdiYSggMCwgMCwgMCwgMC41ICk7Ym9yZGVyOiAwcHggc29saWQgcmdiYSggMCwgMCwgMCwgMSApOyB9IC50Yi1maWVsZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWZpZWxkPSIzYTA0MGYyNmJhY2NhMWYzM2E4Yzg4MjEzMTFkMjU5NiJdIGEgeyB0ZXh0LWRlY29yYXRpb246IG5vbmU7IH0gIC50Yi1ncmlkW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZD0iNTg1Y2MxZmUwMzA2MjM0YjI3MWJiZjlkZTA3YmNkNzEiXSB7IGdyaWQtdGVtcGxhdGUtY29sdW1uczogbWlubWF4KDAsIDAuMjk1ZnIpIG1pbm1heCgwLCAwLjcwNWZyKTtncmlkLWNvbHVtbi1nYXA6IDBweDtncmlkLXJvdy1nYXA6IDBweDtncmlkLWF1dG8tZmxvdzogcm93IH0gLnRiLWdyaWRbZGF0YS10b29sc2V0LWJsb2Nrcy1ncmlkPSI1ODVjYzFmZTAzMDYyMzRiMjcxYmJmOWRlMDdiY2Q3MSJdID4gLnRiLWdyaWQtY29sdW1uOm50aC1vZi10eXBlKDJuICsgMSkgeyBncmlkLWNvbHVtbjogMSB9IC50Yi1ncmlkW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZD0iNTg1Y2MxZmUwMzA2MjM0YjI3MWJiZjlkZTA3YmNkNzEiXSA+IC50Yi1ncmlkLWNvbHVtbjpudGgtb2YtdHlwZSgybiArIDIpIHsgZ3JpZC1jb2x1bW46IDIgfSAudGItZ3JpZC1jb2x1bW5bZGF0YS10b29sc2V0LWJsb2Nrcy1ncmlkLWNvbHVtbj0iMzA5MDQ3NzVkOTA5N2Q5NzQ0OTFkNDE3M2Q2YTcyM2IiXSB7IGRpc3BsYXk6IGZsZXg7IH0gLnRiLWdyaWQtY29sdW1uW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZC1jb2x1bW49IjMwOTA0Nzc1ZDkwOTdkOTc0NDkxZDQxNzNkNmE3MjNiIl0gcCB7IGZvbnQtc2l6ZTogMzZweDtsaW5lLWhlaWdodDogMzFweDt0ZXh0LXRyYW5zZm9ybTogdXBwZXJjYXNlOyB9IC50Yi1maWVsZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWZpZWxkPSIwNTkwMTY0NDc2OTlmMmY0MjZkNDhiNjFhODVhMDYyMiJdIHsgZm9udC1zaXplOiAyNnB4O2xpbmUtaGVpZ2h0OiA0MnB4O3RleHQtYWxpZ246IHJpZ2h0O3BhZGRpbmctbGVmdDogMTVweDsgfSAudGItZmllbGRbZGF0YS10b29sc2V0LWJsb2Nrcy1maWVsZD0iMDU5MDE2NDQ3Njk5ZjJmNDI2ZDQ4YjYxYTg1YTA2MjIiXSBhIHsgdGV4dC1kZWNvcmF0aW9uOiBub25lOyB9ICAudGItZmllbGRbZGF0YS10b29sc2V0LWJsb2Nrcy1maWVsZD0iYjQ4ZTZiMzgzZGNmY2RkNzVhOTQ1MzMxOTk5ZmI2ZDYiXSB7IGZvbnQtc2l6ZTogMjhweDtsaW5lLWhlaWdodDogMjhweDt0ZXh0LWFsaWduOiByaWdodDtwYWRkaW5nLWxlZnQ6IDE1cHg7IH0gLnRiLWZpZWxkW2RhdGEtdG9vbHNldC1ibG9ja3MtZmllbGQ9ImI0OGU2YjM4M2RjZmNkZDc1YTk0NTMzMTk5OWZiNmQ2Il0gYSB7IHRleHQtZGVjb3JhdGlvbjogbm9uZTsgfSAgLnRiLWZpZWxkW2RhdGEtdG9vbHNldC1ibG9ja3MtZmllbGQ9ImNjOGIwNzI3MzFkYWI0YmU5ZDNkNTBlZjVlZDdjYzA2Il0geyBmb250LXNpemU6IDI4cHg7bGluZS1oZWlnaHQ6IDI4cHg7dGV4dC1hbGlnbjogcmlnaHQ7cGFkZGluZy1sZWZ0OiAxNXB4OyB9IC50Yi1maWVsZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWZpZWxkPSJjYzhiMDcyNzMxZGFiNGJlOWQzZDUwZWY1ZWQ3Y2MwNiJdIGEgeyB0ZXh0LWRlY29yYXRpb246IG5vbmU7IH0gIC50Yi1ncmlkLWNvbHVtbltkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQtY29sdW1uPSJhOTQ3N2IzYjJhY2JhYjVlODE3YWUyMWNjNmQwOTczZSJdIHsgZGlzcGxheTogZmxleDsgfSBbZGF0YS10b29sc2V0LWJsb2Nrcy1pbWFnZT0iZWYzOGFiN2M0MzY3OWVlZDkwODdlZTQzYjU4MjkxMDUiXSB7IG1heC13aWR0aDogMTAwJTsgfSBbZGF0YS10b29sc2V0LWJsb2Nrcy1pbWFnZT0iZWYzOGFiN2M0MzY3OWVlZDkwODdlZTQzYjU4MjkxMDUiXSAudGItaW1hZ2Utc2hhZG93LTEtaW5uZXIgeyBib3JkZXI6IDBweCBzb2xpZCByZ2JhKCAwLCAwLCAwLCAwLjI1ICk7Ym9yZGVyLXJhZGl1czogMDsgfSBAbWVkaWEgb25seSBzY3JlZW4gYW5kIChtYXgtd2lkdGg6IDc4MXB4KSB7IC50Yi1maWVsZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWZpZWxkPSIzYTA0MGYyNmJhY2NhMWYzM2E4Yzg4MjEzMTFkMjU5NiJdIGEgeyB0ZXh0LWRlY29yYXRpb246IG5vbmU7IH0gIC50Yi1ncmlkW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZD0iNTg1Y2MxZmUwMzA2MjM0YjI3MWJiZjlkZTA3YmNkNzEiXSB7IGdyaWQtdGVtcGxhdGUtY29sdW1uczogbWlubWF4KDAsIDAuNWZyKSBtaW5tYXgoMCwgMC41ZnIpO2dyaWQtYXV0by1mbG93OiByb3cgfSAudGItZ3JpZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQ9IjU4NWNjMWZlMDMwNjIzNGIyNzFiYmY5ZGUwN2JjZDcxIl0gPiAudGItZ3JpZC1jb2x1bW46bnRoLW9mLXR5cGUoMm4gKyAxKSB7IGdyaWQtY29sdW1uOiAxIH0gLnRiLWdyaWRbZGF0YS10b29sc2V0LWJsb2Nrcy1ncmlkPSI1ODVjYzFmZTAzMDYyMzRiMjcxYmJmOWRlMDdiY2Q3MSJdID4gLnRiLWdyaWQtY29sdW1uOm50aC1vZi10eXBlKDJuICsgMikgeyBncmlkLWNvbHVtbjogMiB9IC50Yi1ncmlkLWNvbHVtbltkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQtY29sdW1uPSIzMDkwNDc3NWQ5MDk3ZDk3NDQ5MWQ0MTczZDZhNzIzYiJdIHsgZGlzcGxheTogZmxleDsgfSAudGItZmllbGRbZGF0YS10b29sc2V0LWJsb2Nrcy1maWVsZD0iMDU5MDE2NDQ3Njk5ZjJmNDI2ZDQ4YjYxYTg1YTA2MjIiXSBhIHsgdGV4dC1kZWNvcmF0aW9uOiBub25lOyB9ICAudGItZmllbGRbZGF0YS10b29sc2V0LWJsb2Nrcy1maWVsZD0iYjQ4ZTZiMzgzZGNmY2RkNzVhOTQ1MzMxOTk5ZmI2ZDYiXSBhIHsgdGV4dC1kZWNvcmF0aW9uOiBub25lOyB9ICAudGItZmllbGRbZGF0YS10b29sc2V0LWJsb2Nrcy1maWVsZD0iY2M4YjA3MjczMWRhYjRiZTlkM2Q1MGVmNWVkN2NjMDYiXSBhIHsgdGV4dC1kZWNvcmF0aW9uOiBub25lOyB9ICAudGItZ3JpZC1jb2x1bW5bZGF0YS10b29sc2V0LWJsb2Nrcy1ncmlkLWNvbHVtbj0iYTk0NzdiM2IyYWNiYWI1ZTgxN2FlMjFjYzZkMDk3M2UiXSB7IGRpc3BsYXk6IGZsZXg7IH0gIH0gQG1lZGlhIG9ubHkgc2NyZWVuIGFuZCAobWF4LXdpZHRoOiA1OTlweCkgeyAudGItZmllbGRbZGF0YS10b29sc2V0LWJsb2Nrcy1maWVsZD0iM2EwNDBmMjZiYWNjYTFmMzNhOGM4ODIxMzExZDI1OTYiXSBhIHsgdGV4dC1kZWNvcmF0aW9uOiBub25lOyB9ICAudGItZ3JpZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQ9IjU4NWNjMWZlMDMwNjIzNGIyNzFiYmY5ZGUwN2JjZDcxIl0geyBncmlkLXRlbXBsYXRlLWNvbHVtbnM6IG1pbm1heCgwLCAxZnIpO2dyaWQtYXV0by1mbG93OiByb3cgfSAudGItZ3JpZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQ9IjU4NWNjMWZlMDMwNjIzNGIyNzFiYmY5ZGUwN2JjZDcxIl0gID4gLnRiLWdyaWQtY29sdW1uOm50aC1vZi10eXBlKDFuKzEpIHsgZ3JpZC1jb2x1bW46IDEgfSAudGItZ3JpZC1jb2x1bW5bZGF0YS10b29sc2V0LWJsb2Nrcy1ncmlkLWNvbHVtbj0iMzA5MDQ3NzVkOTA5N2Q5NzQ0OTFkNDE3M2Q2YTcyM2IiXSB7IGRpc3BsYXk6IGZsZXg7IH0gLnRiLWZpZWxkW2RhdGEtdG9vbHNldC1ibG9ja3MtZmllbGQ9IjA1OTAxNjQ0NzY5OWYyZjQyNmQ0OGI2MWE4NWEwNjIyIl0gYSB7IHRleHQtZGVjb3JhdGlvbjogbm9uZTsgfSAgLnRiLWZpZWxkW2RhdGEtdG9vbHNldC1ibG9ja3MtZmllbGQ9ImI0OGU2YjM4M2RjZmNkZDc1YTk0NTMzMTk5OWZiNmQ2Il0gYSB7IHRleHQtZGVjb3JhdGlvbjogbm9uZTsgfSAgLnRiLWZpZWxkW2RhdGEtdG9vbHNldC1ibG9ja3MtZmllbGQ9ImNjOGIwNzI3MzFkYWI0YmU5ZDNkNTBlZjVlZDdjYzA2Il0gYSB7IHRleHQtZGVjb3JhdGlvbjogbm9uZTsgfSAgLnRiLWdyaWQtY29sdW1uW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZC1jb2x1bW49ImE5NDc3YjNiMmFjYmFiNWU4MTdhZTIxY2M2ZDA5NzNlIl0geyBkaXNwbGF5OiBmbGV4OyB9ICB9IA==
نهلة عيد سليمان الحازمي
دكتوراه
الهندسة
University of Leeds

مجال التميز  

تميز دراسي وبحثي وإبداع علمي  

البحوث المنشورة  

       

البحث (1): 

    

عنوان البحث: 

Effect of the
anisotropic thermal conductivity of GDL on the performance of PEM fuel cells
 

رابط إلى البحث: 

Click here 

تاريخ النشر: 

  3/07/2012 

موجز عن البحث: 

Gas diffusion
layers (GDLs) are one of the main components in proton exchange membrane
(PEM) fuel cells. In this paper, the effect of anisotropic thermal
conductivity of the GDL is numerically investigated under different operating
temperatures. Furthermore, the sensitivity of the PEM fuel cell performance
to the thermal conductivity of the GDL is investigated for both in-plane and
through-plane directions and the temperature distributions between the
different GDL thermal conductivities are compared. The results show that
increasing the in-plane and through-plane thermal conductivity of the GDL
increases the power density of PEM fuel cells significantly. Moreover, the
temperature gradients show a greater sensitivity to the in-plane thermal
conductivity of the GDL as opposed to the through-plane thermal conductivity.
 

البحث (2): 

    

عنوان البحث: 

The in-plane
thermal conductivity and the contact resistance of the components of the
membrane electrode assembly in proton exchange membrane fuel cells
 

رابط إلى البحث: 

Click here

تاريخ النشر:

23/04/2013

موجز عن البحث:

Understanding the
thermal properties of the materials which are used in a proton exchange
membrane fuel cell (PEM) is essential for the thermal management of a PEM
fuel cell and consequently for improving its performance. In this paper, the
parallel thermal conductance technique (PTC) has been employed to obtain the
in-plane thermal conductivity and the contact resistance of several
components of the membrane electrode assembly (MEA). In addition, the effects
of temperature, polytetrafluoroethylene (PTFE) loading, micro porous layer
(MPL) coating and the fibre direction on the in-plane thermal conductivity of
the gas diffusion layer (GDL) have been investigated. The in-plane thermal
conductivity of the GDL was found to decrease with increasing temperature and
increase slightly with increasing PTFE loading and MPL coating. Further, the
in-plane thermal conductivity of the membrane increased with higher amounts
of water in the membrane. The in-plane thermal conductivity of the catalyst
layer was found to be insensitive to the temperature and it increased with
platinum loading.

البحث (3):

 

عنوان البحث:

The through-plane
thermal conductivity and the contact resistance of the components of the
membrane electrode assembly and gas diffusion layer in proton exchange
membrane fuel cells

رابط إلى البحث:

Click here

تاريخ النشر:

Accepted 14/07/2014

موجز عن البحث:

The thermal
conductivity of the components of the membrane electrode assembly (MEA) and
GDL must be accurately estimated in order to better understand the heat
transfer processes in the proton exchange membrane (PEM) fuel cells. In this
study, an experimental investigation has been performed to measure the
through-plane thermal conductivity and the contact resistance for a number of
gas diffusion layer (GDL) materials. The sensitivity of these quantities to
the temperature, PTFE content and micro porous layer (MPL) coating has been
undertaken. In addition, the through-plane thermal conductivity of the
membrane has been measured and reported as a function of temperature and
water content. Further, the through-plane thermal conductivity of the
catalyst layer has been determined as a function of temperature and platinum
loading. It has been found that the through-plane thermal conductivity of the
components of the MEA decreases when the temperature increases, and the
through-plane thermal conductivity of the GDL is significantly lower than its
in-plane thermal conductivity.

المؤتمرات
العلمية:

 

المؤتمر (1):

 

عنوان المؤتمر:

Fifth European Fuel
Cell Technology
 & Applications
Conference – Piero Lunghi Conference

تاريخ الإنعقاد:

   11-13/12/2013   

مكان الإنعقاد:

Rome, Italy

طبيعة المشاركة:

Oral Presentation

عنوان المشاركة:

The through-plane
thermal conductivity and the contact resistance of the components of the
membrane electrode assembly in proton exchange membrane fuel cells.

ملخص المشاركة:

The thermal
conductivity of the components of the membrane electrode assembly (MEA) must
be accurately estimated in order to better understand the heat transfer
processes in proton exchange membrane (PEM) fuel cells. In this study, an
experimental investigation has been performed to measure the through-plane
thermal conductivity and the contact resistance for a number of gas diffusion
layer (GDL) materials. The sensitivity of these quantities to the
temperature, PTFE content and micro porous layer (MPL) coating has been
undertaken. In addition, the through-plane thermal conductivity of the
membrane has been measured and reported as a function of temperature and
water content. Further, the through-plane thermal conductivity of the
catalyst layer has been determined as a function of temperature and platinum
loading. It has been found that the through-plane thermal conductivity of the
components of the MEA decreases when the temperature increases, and the
through-plane thermal conductivity of the GDL is significantly lower than its
in-plane thermal conductivity.

Index Terms –
catalyst layer, gas diffusion layer, membrane,through-plane thermal
conductivity.

المؤتمر (2):

 

عنوان المؤتمر:

4th European PEFC and H2 Forum 2013

تاريخ الإنعقاد:

2-5/07/2013

مكان الإنعقاد:

Lucerne Switzerland

طبيعة المشاركة:

Oral Presentation

عنوان المشاركة:

Metal-based gas
diffusion layer in proton exchange
 membrane fuel cells

ملخص المشاركة:

Gas diffusion
layers (GDLs) in PEM fuel cells should be made from a high thermal
conductivity and a high electrical conductivity material with uniform
optimized pore sizes

In this paper, a
three-dimensional multiphase model has been developed to investigate the
effect of the metallic based GDL on the performance of PEM fuel cells. The
copper and aluminium based GDLs have been compared with the conventional
carbon paper based GDLs. The results show an increase in the power density of
the PEM fuel cells when the metallic based gas diffusion layer has been used.
In addition, the maximum temperature in the PEM fuel cell decreases when the
metallic based GDLs have been used and the temperature gradient decreases due
to the dissipation of the heat from the membrane electrode assembly.
Moreover, using the metallic based GDL increases the liquid water saturation
as the maximum temperature decreases, which is a result of the uniform
temperature distribution.

المؤتمر (3):

 

عنوان المؤتمر:

European Fuel Cell
– Piero Lunghi Conference & Exhibition

تاريخ الإنعقاد:

4-16/12/2011

مكان الإنعقاد:

Rome, Italy

طبيعة المشاركة:

Paper presentation

عنوان المشاركة:

The effect of anisotropic gdl on the performance of pem fuel cell

ملخص المشاركة:

Typically, gas diffusion layers (GDLs) in proton exchange membrane
(PEM) fuel cells demonstrate an anisotropy in the thermal conductivity. In
this study, an in-house PEM fuel cell was modelled and validated against
experimental data. Subsequently the sensitivity of the fuel cell performance
to the anisotropic thermal conductivity was investigated. The temperature
gradient across the membrane electrode assembly (MEA) was found to decrease
more with increase the in-plane thermal conductivity. The overall performance
of the fuel cell was found to increase more with increasing the in-plane
thermal conductivity. Likewise, the average local current density with the
GDL was shown to increase with increasing the thermal conductivity of the
GDL.

براءة إختراع:

 

نوع الإختراع:

Proton exchange
membrane fuel cell

الجهة المسجلة:

Net Scientific
Limited

تاريخ تسجيل
الإختراع:

20/06/2013

ملخص عن الإختراع:

The invention
relates to a proton exchange membrane fuel cell and a method of designing the
same. A method of designing
 a proton exchange
membrane fuel cell comprising a gas diffusion layer is described. The method
comprises: using a model of the proton exchange membrane fuel cell to
determine performance of the fuel cell, wherein the model is based on a
plurality of parameters of the fuel cell, the plurality of parameters
including at least one anisotropic property of the gas diffusion layer,
adjusting at least one of the plurality of parameters; determining whether or
not performance of the fuel cell is improved by the adjusting step and
designing the fuel cell by selecting the parameters which provide improved
performance. A proton exchange membrane fuel cell is also described
comprising a gas diffusion layer, the proton exchange membrane fuel cell
having a plurality of parameters, wherein the parameters are selected to
provide substantially uniform temperature distribution across the gas
diffusion layer

المؤتمر (3):

 

عنوان المؤتمر:

Fifth European Fuel
Cell Technology & Applications Conference – Piero Lunghi Conference

تاريخ الإنعقاد:

11-13/12/2013 

مكان الإنعقاد:

Rome, Italy

طبيعة المشاركة:

Oral Presentation

عنوان المشاركة:

The through-plane
thermal conductivity and the contact resistance of the components of the
membrane electrode
 assembly in proton
exchange membrane fuel cells

ملخص المشاركة:

The thermal
conductivity of the components of the membrane electrode assembly (MEA)
must be accurately
 estimated in order to better
understand th heat transfer processes in proton exchange membrane (PEM) fuel
cells. In this study, an experimental investigation has been performed to
measure the through-plane thermal conductivity and the contact resistance for
a number of gas diffusion layer (GDL) materials. The sensitivity of 
these quantities to the temperature, PTF content and micro porous layer (MPL) coating has been undertaken. In addition, the through-plane thermal conductivity of the membrane has been measured and reported as a function of temperature and water content. Further, the through-plane thermal conductivity of the catalyst layer has been determined as a function of temperature and platinum loading. It has been found that the through-plane thermal conductivity of the components of the MEA decreases when the temperature increases, and the through-plane thermal conductivity of the GDL is significantly lower than its in-plane thermal conductivity.

Index Terms –
catalyst layer, gas diffusion layer, membrane,through-plane thermal
conductivity.

 

 

المؤتمر (4):

 

عنوان المؤتمر:

4th European PEFC and H2 Forum 2013

تاريخ الإنعقاد:

2-5/07/2013 

مكان الإنعقاد:

Lucerne, Switzerland

طبيعة المشاركة:

Oral Presentation

عنوان المشاركة:

 Metal-based gas diffusion layer in
proton  exchange 
membrane fuel cells

ملخص المشاركة:

Gas diffusion layers (GDLs) in PEM
fuel cells should be made from a high thermal conductivity and a high
electrical conductivity material with uniform optimized pore sizes

In this paper, a three-dimensional
multiphase model has been developed to investigate the effect of the metallic
based GDL on the performance of PEM fuel cells. The copper and aluminium
based GDLs have been compared with the conventional carbon paper based GDLs.
The results show an increase in the power density of the PEM fuel cells when
the metallic based gas diffusion layer has been used. In addition, the
maximum temperature in
 the PEM fuel cell
decreases when the metallic based GDLs have been used and the temperature
gradient decreases due to the dissipation of the heat from the membrane
electrode assembly. Moreover, using the metallic based GDL increases the
liquid water saturation as the maximum temperature decreases, which is a
result of the uniform temperature distribution

المؤتمر (5):

 

عنوان المؤتمر:

THE 4th European
Fuel Cell Conference and Exhibition

تاريخ الإنعقاد:

14-16/12/2011 

مكان الإنعقاد:

Rome, Italy

طبيعة المشاركة:

Paper presentation

عنوان المشاركة:

The effect of anisotropic GDL on the
performance of PEM fuel cell

ملخص المشاركة:

Typically, gas
diffusion layers (GDLs) in proton exchange membrane (PEM) fuel cells
demonstrate an anisotropy in the thermal conductivity. In this study, an
in-house PEM fuel cell was modelled and validated against experimental data.
Subsequently the sensitivity of the fuel cell performance to the anisotropic
thermal conductivity was investigated. The temperature gradient across the
membrane electrode assembly (MEA) was found to decrease more with increase
the in-plane thermal conductivity. The overall performance of the fuel cell
was found to increase more with increasing the in-plane thermal conductivity.
Likewise, the average local current density with the GDL was shown to
increase with increasing the thermal conductivity of the GDL.

براءة إختراع:

 

نوع الإختراع:

Proton exchange membrane fuel cell

الجهة المسجلة:

Net
Scientific Limited

تاريخ تسجيل الإختراع:

20/06/2013

ملخص عن الإختراع:

The invention relates to a proton exchange membrane
fuel cell and a method of designing the same. A method of designing 
a proton exchange membrane fuel cell comprising a
gas diffusion layer is described. The method comprises: using a model of the
proton exchange membrane fuel cell to determine performance of the fuel cell,
wherein the model is based on a plurality of parameters of the fuel cell, the
plurality of parameters including at least one anisotropic property of the
gas diffusion layer, adjusting at least one of the plurality of parameters;
determining whether or not performance of the fuel cell is improved by the
adjusting step and designing the fuel cell by selecting the parameters which
provide improved performance. A proton exchange membrane fuel cell is also
described comprising a gas diffusion layer, the proton exchange membrane fuel
cell having a plurality of parameters, wherein the parameters are selected to
provide substantially uniform temperature distribution across the gas
diffusion layer.


المرفقات

  • https://uksacb.org/wp-content/uploads/2014/01/patent-certificate.pdf
  • https://uksacb.org/wp-content/uploads/2014/01/patent.pdf
  • https://uksacb.org/wp-content/uploads/2014/10/research-excellence-certificate.pdf
  • https://uksacb.org/wp-content/uploads/2014/01/patent-certificate.pdf
  • https://uksacb.org/wp-content/uploads/2014/01/patent.pdf
  • https://uksacb.org/wp-content/uploads/2014/10/research-excellence-certificate.pdf
  • تويتر
  • فيسبوك
  • بنترست

آخر الأخبار

  • بدء اجراءات إنتخابات النوادي الطلابية السعودية للدورة ٤٣ للعام ٢٠٢٤
    7 ديسمبر، 2023
  • الملحقية الثقافية تعقد ملتقى “آفاق” العلمي بجامعة كامبريدج
    7 ديسمبر، 2023
  • صالون لندن الثقافي – أنت خيارنا وقدراتك مستقبلنا، الإبتعاث في شكله المُبهج ومضمونه العميق نحو رؤية السعودية
    13 نوفمبر، 2023

آخر التعاميم والإعلانات

  • بدء اجراءات إنتخابات النوادي الطلابية السعودية للدورة ٤٣ للعام ٢٠٢٤
    7 ديسمبر، 2023
  • صالون لندن الثقافي – “‫حماية البيئة وتنميتها بمشاريع البحر الأحمر الدولية.”
    13 نوفمبر، 2023
  • صالون لندن الثقافي – أنت خيارنا وقدراتك مستقبلنا، الابتعاث في شكله المُبهج ومضمونه العميق نحو رؤية السعودية
    22 أكتوبر، 2023

أوقات الدوام

  • الإثنين:    09 صباحاً – 4 مساء
  • الثلاثاء:    09 صباحاً – 4 مساءً
  • الأربعاء:   09 صباحاً – 4 مساءً
  • الخميس:  09 صباحاً – 4 مساءً
  • الجمعة:   09 صباحاً – 4 مساءً

الملحقية الثقافية السعودية

عناوين الملحقية


sacbuk@uk.moe.gov.sa


+44 20 3249 7000


630 Chiswick High Road London W4 5RY

  • دليل الدارس في المملكة المتحدة

  • تصديق الشهادات والقبولات

  • العلاج الطبي

  • إتصل بنا

© 2023 | بتقنية قالب مهارتي