THE UNIVERSITY of York

13th July 2011

DEPARTMENT OF PHYSICS Heslington, York YO10 5DD, U.K.

Professor Kevin O'Grady Magnetic Materials Research Group Department of Physics

Telephone:

(+44) (0)1904 322289

Fax:

(+44) (0)1904 322247

E.mail:

kevin.ogrady@york.ac.uk

Certificate of Attendance

I am pleased to confirm that Tariq F Alhuwaymel attended the JSPS York-Tohoku Research Symposium on Magnetic Materials and Spintronics from Monday the 27th June to Wednesday the 29th June 2011 and presented a poster on Monday the 27th June.

Kevin O'Grady

Professor of Experimental Physics

Dear Sir/Madam,

I hereby confirm that Mr. Tariq Alhuwaymel has attended workshop Research in Magnetism 2011" held in Durham on 21st September 20 presented a poster titled "Development of a New Characterisation 7 Half-Metallic Ferromagnetic Ultrathin Films".

'Current nd ique for

Yours sincerely,

Dr. Erhan Arac Research Associate

Durham University Department of Physics DH1 3LE United Kingdom

Tel: +44 (0) 191 33 43655

E-mail: erhan.arac@durham.ac.uk

THE UNIVERSITY of York

DEPARTMENT OF COMPUTER SCIENCE

Deramore Lane, York YO10 5GH

Mike Dodds Anniversary Research Lecturer Research Student Training Officer

Telephone: 01904 325 444

Fax: 01904 325599

Email: mike.dodds@york.ac.uk

Web: http://www.cs.york.ac.uk/

2013-06-24

To whom it may concern,

Re: YDS 2012

The goal of the YDS series is to bring together doctoral students from around the UK and Europe to share and exchange their research and ideas with others. The hope is that by bringing students together from a wide range of areas, we can promote interdisciplinary research, as well as allow doctoral students to gain experience presenting their work to colleagues. The symposia are organised entirely by PhD students at the University of York.

Yours sincerely

Mike Dodds

IEEE International Magnetics Conference

Dresden, Germany May 4-8, 2014

Name Tariq Alhuwaymel Address 18 Pinelands Way York Y010 3 QJ

Dresden, May 8, 2014

IEEE Intermational Magnetics Conference 2014 - Attendance confirmation

To whom it may concern,

Hereby it is confirmed, that

Tariq Alhuwaymel (Pepartment of Electronics, University of York)
York, 4010 5DD, UK

Name, Affiliation

has attended INTERMAG 2014 from 4 to 8 of May, 2014, in Dresden Germany, and presented a talk poster entitled

New bard-gap measurement technique for a half-metallic ferromagnet

Presentation Title

Sincerely,

INTERMAG 2014 Dresder May 1-8

Dr. Heike Schlörb

Intermag 2014 Management Committee

Saudi Students Conference - UK مؤتمر الطلبة السعوديين في المملكة المتحدة

Presenter Certificate

المنطوبة الثقافية بسفارة السلكة المريبة السعوبية في لندن TOYAL EMBASSY OF SAUDI ARABIA - CULTURAL SUREAU - LONDON

With sincere thanks and appreciation extended for

the valuable contribution of

Tariq Alhuwaymel

that was held at Edinburgh International Conference Centre (EICC), In the seventh Saudi Students Conference (SSC2014)

Edinburgh, the United Kingdom

1st – 2nd of February 2014

Mr. Khalid Thamer Althagafy

SSC Scientific Committee Head

Dr. Faisal M. Almohanna Abaaikhail

bian Cultural Attaché in the UK

IOP Institute of Physics

This is to certify that

Tariq Alhuwaymel

Attended the

Magnetism 2014 Conference

From

7-8 April 2014

at

The University of Manchester, UK

Signed Conferences Department
Date 02/04/2014

IOP Institute of Physics

This is to certify that

Tariq Alhuwaymel

attended

Magnetism 2015

on the

30th - 31st March 2015

at the

University of Leeds, Leeds, UK

Signed

Conferences Department
Date 17/03/2015

Proceedings of the

Fifth York Doctoral Symposium on Computer Science

Department of Computer Science The University of York York, UK November 8th, 2012

University of York technical report YCS-2012-480.

Editor:

Victor Bandur

Copyright © 2012 by the authors.

Development of a Band-gap Measurement Technique for Half-Metallic Ferromagnetic Ultrathin Films

T. Alhuwaymel^{1,2}, A. Hirohata^{1,3} and M. El-Gomati¹

¹Department of Electronics, The University of York, YO10 5DD, UK
²National Nanotechnology Center, KACST, Riyadh, Saudi Arabia
³JST PRESTO, Japan Science and Technology Agency, 332-0012, Japan
{tfha500, atsufumi.hirohata, mohamed.elgomati}@york.ac.uk

Abstract. Spintronics is a new field that aims to realise high performance electronic devices. The electron spins are utilised to create a spin-polarised current which used to be ignored in the conventional electronics. The potential advantages of spintronics are: non-volatile memory, high storage density, high data processing speed and low power consumption. In order to achieve these advantages, there are three key requirements for spintronic devices: high spin polarisation, high Curie temperature (T_c) (i.e., the temperature beyond which ferromagnetic materials becomes paramagnetic) and control of interface structure.

In spintronic devices, ferromagnets (FMs) can be used to inject spins into semiconductors (SCs) and non-magnetic metals. However, the FM/SC structures have a conductivity mismatch which decreases the efficient injection of polarised carriers. To overcome this conductivity mismatch, three approaches have been proposed. The first is to use 100% spin polarised materials (*i.e.*, Half-Metallic Ferromagnetics (HMFs)). The second is to use materials with similar conductivity (*e.g.*, dilute magnetic semiconductors (DMS)). The third is to use a tuned barrier (*e.g.*, MgO). The HMFs are new class of materials that have unique band structures; the majority spin band (usually represented as spin-up band) have metallic band structure while the minority spin band (spin-down band) have semiconducting band structure with a band gap at E_F . Thus, they exhibit 100% spin polarisation at E_F . There are four categories of materials that are theoretically predicted to be HMFs; Heusler alloys, zinc-blend compounds, oxide compounds and perovskites.

In this study, Co-based full-Heusler alloys are used due to good lattice constant matching with major III-V semiconductors, high Curie temperature (greater than 950K for $\rm Co_2MnSi$), and the ability to control spin density of states (DOS) at the $E_{\rm F}$. The main aim of this study is to develop a new technique to directly measure the band-gap of the Heusler alloys. Circularly polarised infrared (IR) light will be used to excite only minority spins in the Heusler alloys. By controlling the wavelength of the IR light, the excitation energy can be matched to the half-metallic band-gap. This technique will allow us to characterise the width of the minority spin band-gap in the Heusler alloys. This technique will accordingly provide feedback to growth to achieve 100% spin polarisation as a prerequisite for spintronic devices.

¹ G. Schmidt et al., Phys. Rev. B 62, R4790 (2000).

² A. Hirohata et al., Curr. Opinion Solid State Mater. Sci. 10, 93-107 (2006).